DOI: <u>10.12816/00601601</u> Vol. 14 No 2 June 2019

Impact of Protein and Energy Levels on Growth and Water Quality of European Sea Bass in Recirculating Aquaculture System

Alaa A. El-Dahhar¹, Mohamed N. M. Drhat¹, Shaimaa A.H. Shaheen¹, Samy Y. El-Zaaem¹, And Shawky Ibraheim² 1. Animal and Fish Production Dept., Faculty of Agriculture (Saba Basha) Alexandria University PO Box 21531, Alexandria, Egypt

2 .Fisheries Research Center – Abo Hammad El-Abassa

*Corresponding Author: alaaeldahhar@alexu.edu.eg

ARTICLE INFO

Protein and energy levels European Sea Bass Water quality

Recycling Aquaculture System (RAS)

ABSTRACT

In the marine fish production lab (MFPL), an experiment was conducted using a recirculating aquaculture system (RAS) to study the effect of protein and energy levels on the survival, growth, and feed utilization of European Sea bass (E. Sea bass) juvenile. The experiment involved two dietary metabolizable energy (ME) levels, 270 and 290 kcal/100 g, and three dietary crude protein (CP) levels, 34%, 38%, and 42%, in a 2×3 factorial design. The juvenile E. Sea bass were placed in eighteen plastic haba, and then transferred to glass aquaria in the lab. Each plastic haba was stocked with ten E. Sea bass juveniles with an initial body weight of 0.35 g. The juveniles were fed three times daily with the six experimental diets for thirty days until satiation. The results showed that the highest growth rate was achieved with juvenile E. Sea bass provided with 38% dietary crude protein and 270 kcal dietary metabolizable energy. An increase in dietary crude protein level up to 38% resulted in a significant increase in final body weight (FBW) (P < 0.01), with no significant differences observed between the groups of energy (P > 0.05). The interaction between the two factors (CP = 0.05). and ME) was substantial (P < 0.01), and the best significant FBW was found with 38% CP and 270 kcal ME (P < 0.01). Further, the feed conversion ratio (FCR) improved with increasing CP level up to 38%, with no significant difference observed with increasing the ME level beyond 270 kcal ME (P > 0.05). E. Sea bass body fat and protein content were significantly affected by increasing the CP level to 38% and increasing the ME level to 270 kcal (P < 0.05).

INTRODUCTION

The growth of aquaculture was found to be the fastest-growing sector of the agribusiness industry. Also, the growth of this sector slowed over the past two decades, multiplied from 32.4 million tons in the year 2000 to 73.8 million tons in 2014 (FAO, 2018). The same report also stated that the fish size reached in a particular planting period depends on the fish growth rate. The environmental damage due to the high intensification of aquaculture practices causes significant discharge of concentrated organic waste, which depletes dissolved oxygen in ponds, leading to toxic metabolites (e.g., hydrogen sulfide, methane, ammonia, nitrite), and often leads to high mortality. Under these intensive production conditions, aquatic species are exposed to extreme stress, increasing disease prevalence and low productivity. However, the prevention and control of animal diseases in recent decades has focused on using chemical additives and veterinary medicines, especially antibiotics, which generate significant public health risks by enhancing bacterial-resistant strains' selection, spread, and persistence (FAO, 2018).

The success of fish larviculture is controlled by several factors e.g., water quality, immunity, nutrition, stocking density and temperature (Herath and Atapaththu, 2013; Kupren et al., 2011). Good stocking density is helpful in the best water quality, tanks, and resources in the economic production (Fairchild and Howell, 2001). Density can affect growth, survival, and behavior, in addition to the occurrence of cannibalism, during larviculture (Luz and Zaniboni Filho, 2002; Slembrouck et al., 2009; Sukumaran et al., 2011).

The increased growth performance and feed utilization of Marine Fish caused by the high lipids and digestible protein reduces the solid wastes and the environmental impact of nitrogen and phosphorus effluents

© Copyright by the Arabian Aquaculture Society 2019

EL-DAHHAR ET AL

تأثير مستويات البروتين والطاقة على النمو ونوعية المياه لصغار أسماك القاروص الأوروبي في نظام إعادة تدوير المياه

علاء عبد الكريم الدحار¹، محمد نايف درهات ¹، وشيماء شاهين¹ ، سامي يحيى الزعيم¹، وشوقي إبراهيم درويش² قسم الانتاج الحيوانى والسمكى، كلية الزراعة سابا باشا جامعة الاسكندرية

2. المعمل المركزي لبحوث الثروة السمكية بكفر الشيخ ، مصر

تم إجراء تجربة باستخدام نظام تربية الأحياء المائية المعاد تدويره (RAS) في معمل إنتاج الأسماك البحرية (MFPL)، لدراسة تأثير مستويات البروتين والطاقة على بقاء ونمو واستخدام العلف لصغار أسماك القاروص الأوروبي. تضمنت التجربة مستويين من الطاقة الميتابولزمية (ME)، 270 و290 ك كالوري/100 جم، وثلاثة مستويات من البروتين الغذائي الخام (CP)، 34%، و38%، و42%، في تصميم عاملي 2×3. تم وضع صغار E. Sea bass في ثمانية عشر هبًا بالستيكيًا، في أحواض زجاجية في المعمل. تم تخزين كل هابا بلاستيكية بعشرة صغار من أسماك القاروص. بوزن أولى قدره 0.35 جرام. تمت تغذية صغار الأسماك ثلاث مرات يومياً بالوجبات التجريبية الستة لمدة ثلاثين يوماً حتى الشبع. أظهرت النتائج أن أعلى معدل نمو تم تحقيقه مع أسماك القاروص التي تم تزويدها بنسبة 38% من البروتين الخام الغذائي و 270 ك كالوري من الطاقة الميتابولزمية. أدت الزيادة في مستوى البروتين الخام الغذائي بنسبة تصل إلى 38٪ إلى زيادة كبيرة في وزن الجسم النهائي (P < 0.01)، مع عدم وجود فروق ذات دلالة إحصائية بين مجموعات الطاقة (P > 0.05). كان التفاعل بين العاملين (CP وME وME) كبيرًا (P > 0.01)، وتم العثور على أفضل FBW مهم بنسبة 38٪ CP و 270 ك كالوري / 100 جم علف (P < 0.01). علاوة على ذلك، تحسنت نسبة التحويل الغذائي (FCR) مع زيادة مستوى CP حتى 38%، مع عدم وجود فرق كبير ملحوظ مع زيادة مستوى ME إلى ما بعد 270 كيلو كالوري E كالوري E كالوري E كالوري الدهون والبروتينات في جسم قاروص البحر بشكل كبير عن طريق زيادة مستوى CP إلى 38٪ وزيادة مستوى ME إلى 270 سعرة حرارية (P <0.05).